
Hamiltonian studies of the two-dimensional n-component cubic model. II. The cubic transition

This article has been downloaded from IOPscience. Please scroll down to see the full text article.

1986 J. Phys. A: Math. Gen. 19 575

(http://iopscience.iop.org/0305-4470/19/4/018)

Download details:

IP Address: 129.252.86.83

The article was downloaded on 31/05/2010 at 11:55

Please note that terms and conditions apply.

View the table of contents for this issue, or go to the journal homepage for more

Home Search Collections Journals About Contact us My IOPscience

http://iopscience.iop.org/page/terms
http://iopscience.iop.org/0305-4470/19/4
http://iopscience.iop.org/0305-4470
http://iopscience.iop.org/
http://iopscience.iop.org/search
http://iopscience.iop.org/collections
http://iopscience.iop.org/journals
http://iopscience.iop.org/page/aboutioppublishing
http://iopscience.iop.org/contact
http://iopscience.iop.org/myiopscience


J. Phys. A: Math. Gen. 19 (1986) 575-584. Printed in Great Britain 

Hamiltonian studies of the two-dimensional n-component cubic 
model: 11. The cubic transition 

F Igl6it 
Central Research Institute for Physics, H-1525 Budapest 114, POB 49, Hungary 

Received 2 January 1985, in final form 7 June 1985 

Abstract. The phase transition behaviour of the Hamiltonian version of the two-dimensional 
n-component cubic model is studied along the cubic transition line. I / n  expansion and 
anisotropy expansion around the 2n-state Potts point are used to determine the phase 
transition line and the latent heat. The latent heat depends on the value of the coupling 
whereas the crossover value of n, where the transition changes from second to first order, 
does not (it is nc = 2). The latent heat has an essential singularity at n = 2 along the cubic 
transition line. 

1. Introduction 

In the preceding paper (Igl6i 1986, hereafter referred to as paper I) the phase diagram 
and the critical properties of the (1 + 1)-dimensional n-component cubic model were 
determined. In this paper the properties of the cubic transition are investigated, when 
this transition is of first order. We use two methods of expansion which supply 
complementary information. The l / n  expansion for large values of n is a good 
approximation, while the coefficients of the anisotropy expansion around the 2n-state 
Potts point have small values when n is close to 2. These expansion methods are 
unfortunately not suitable for investigating the neighbourhood of the multicritical point 
because at this point all terms of the perturbational expressions become equally 
important, signalling the role of competing effects. 

The l l n  series is determined up to second order for the phase transition line, for 
the latent heat and for the crossover value of n,, where the order of the phase transition 
changes from first to second order. In this paper the 2n-state Potts model was taken 
as a reference system, and the expansion was made with respect to the anisotropy. 
This series was determined in first order only because calculation of the higher-order 
terms would need a knowledge of the properties of the 2n-state Potts model beyond 
the critical point, and these are not known. 

The paper is arranged as follows: § 2 contains the formalism and the duality 
properties of the model; § §  3 and 4 respectively give the results of the l / n  expansion 
and anisotropy expansion; § 5 contains a summary. The details of the calculations are 
presented in the appendix. 

2. Duality properties 

To investigate the duality properties of the model we use the strong-coupling representa- 
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tion (paper I, equations (2.1) and (2.2)), and rewrite the Hamiltonian in the form 

- h ,  y1 ( M : +  M ; ' k ) - h 2 x  MY 
i k - 1  1 

Here A1 and A 2  denote the couplings between the neighbouring spins, while h,  and h2 
are the strengths of the external fields appearing in the Hamiltonian version of the 
model. R and M are 2n x2n  matrices: 

R =  

0 1 0  1 0  
and w = exp(2vi/2n). These matrices commute in different sites; on the same site they 
satisfy the Z(2n)algebra: 

a:-); =a:+', ~ f ~ j  = M:+',  M f R :  = w k ' R f M : .  (2.2) 

Cl:= n M r ,  

Let us now introduce a dual lattice and define the operators R:, Mk on the sites 
of the dual lattice, i.e. on the links of the original lattice: 

n;rf = n;n-";+ , .  
jGi 

It is easy to see that these operators also satisfy the Z(2n) algebra. The Hamiltonian 
operator (2.1) can be written in terms of the new operators as 

Comparing (2.1) and (2.3), one can see that the model is not, in general, self-dual. 
However, by using the parametrisation 

the Hamiltonian can be written as 

H = Ho+ Hp, 

(2.5) 

Ho obeys the duality relation 

Ho(h, A )  = hH,(h-' ,  A )  
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and its self-dual line is h = 1 independently of A. The original model (described by 
H) is self-dual if Hp = 0. This is true for the Ashkin-Teller model, where n = 2, and 
at the 2n-state Potts point, i.e. at A = 1. The plane given by equation (2.4) was used 
by Kohmoto et a1 (1981) in their study on the Ashkin-Teller model. It turned out that 
this subspace contains all the interesting regions of the phase diagram (Igl6i and 
Sdlyom 1984). Finally we would mention that the (2.5) form of the Hamiltonian will 
be used in Q 4 to perform an anisotropy expansion around the 2n-state Potts point in 
powers of A - 1. 

3; l / n  expansion 

For several spin systems, in which the number of components of the spin is a parameter 
and the n + a3 limit is exactly soluble, a well converging 1/ n expansion can be defined. 
The method was introduced by Kogut (1980) and was applied to several spin and 
gauge systems. The success of the method is due to the fact that even in first order, 
infinite terms of different orders of the usual Brillouin- Wigner perturbation series have 
to be summed. 

The essence of the 1/ n expansion may be summarised as follows. The ground state 
energy of the system as a function of the coupling has to be determined for different 
powers of l,/ n, both in the weak-coupling and the strong-coupling regime. The crossing 
point for the two expressions is identified with the phase transition point in the given 
order. Furthermore, the difference in the slopes of the two curves at the crossing point 
is proportional to the latent heat, also in the given order of 1/ n. The latent heat defined 
in this way is positive for large values of n ;  however, it becomes negative with decreasing 
values. As was pointed out by Kogut (1980), the polynomial form of the finite series 
is not able to account for the essential singularity in the latent heat corresponding to 
the second- to first-order change in the transition. Therefore the latent heat obtained 
by l / n  expansion has a physical meaning only for its positive values. 

The crossover value of n is defined by the zero of the latent heat expression, while 
for its negative values the transition is assumed to be of second order. The estimate 
for the crossover value of n turned out to be fairly accurate even in first order for the 
Potts model in two and three dimensions (Kogut et al 1980, Kogut and Sinclair 1981). 
The further terms give a slight improvement though the convergence of the series is 
rather slow. For illustration, the approximate crossover values of n are summarised 
in table 1 for the n-state Potts model in two dimensions. Here, the exact solution of 
Baxter was used both for the latent heat (Baxter 1973) and for the jump in the 
magnetisation (Baxter 1982): 

6 2 8 26 76 
n n  n n n 

L= 1 --+,+,+T+?+. . ., 

From table 1 it can be seen that the two series for n, go from different directions 
to the exact value of 4. 

The 1/ n expansion is easier to apply for systems where self-duality holds. In these 
cases the weak-coupling and strong-coupling series are connected by self-duality, and 
the approximate transition points coincide with the self-dual point in every order of 
the calculation. 
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Table 1. Zeros of the latent heat and the magnetisation series in powers of l/n for the 2D 

n-state Potts model. 

Crossover value of n 

Order Latent heat Magnetisation 

1 6 1 
2 5.646 2.303 
3 5.346 3 
4 5.106 3.378 
5 4.91 1 3.598 

In our model, where self-duality generally does not hold, the two expansions have 
to be carried out separately. The first few terms of the weak- and strong-coupling 
series are given in the appendix. In the neighbourhood of the phase transition points 
the terms of the series can be arranged in powers of l / n  if the condition 

2nh: >> h: (3.1) 

is fulfilled. This condition is true for the cubic transition line. Unfortunately, the 
multicritical point cannot be investigated by this method. In that region all terms of 
the series become of the same order of magnitude, a fact that clearly represents the 
role of competition in creating multicritical points. In the following the phase diagram 
and the latent heat of the cubic transition are given up to second order. 

The ground state energy in the strong- and weak-coupling limit up to second order 
in 1/n is given in the appendix. The phase transition point is given as 

1 
2n 

2h = 1 + A + - a l ( A )  (3.2) 

Here 

( Y ~ ( A ) = - ( A - ~ ) [ ~ + A + ( A - ~ ) / ( A + ~ ) ]  

while the form of a2(A)  is given in figure 1. The latent heat is 

( A ) +  . . .  (3.3) 

where 

6,(A) = -6+ ( A  - 1) -2[(A - l ) / ( A  +3)]’ 

while 6,(h) is sketched in figure 1. 

the formulae are relatively simple: 
We also give the results in the original space of couplings up to first order, when 

(3.4) 

(3.5) 

In the following let us discuss some consequences of these formulae. 
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x 
Figure 1. Second-order expansion parameters of the phase transition point (az) and of the 
latent heat (a2) .  

(i) In zeroth order, i.e. in the n-oo limit, the phase transition points (3.2) and 
(3.4) are the same as in the mean-field calculation ( 0  3, paper I ) .  Therefore the 
mean-field phase diagram is exact for the cubic transition line in the n + 00 limit. 

(ii) The position of the multicritical point for large values of n can be obtained 
from condition (3.1). It is 

2nh: = h:. 

This expression is also in agreement with the results of mean-field calculation. 
(iii) The latent heat depends on the values of the couplings, even in first order of 

1/ n. Therefore there is no universality for the first-order transition. 
(iv) In order to investigate the convergence of the series (3.2) for the phase transition 

points, we compare it with the results of other methods. At A = 1 (at the 2n-state Potts 
point) equation (3.2) is exact. In another part of the phase diagram, at A =0,  we 
compare it with the result of the self-dual RG calculation ( 0  4, paper I ) .  Figure 2 shows 
that the results of the two methods are quite close to each other for n 3 3. 

1/10 lis 114 l/ 3 
1 In 

112 

Figure 2. Phase transition point at A = 0, for different values of n. -, RG calculation; 
_ _ _  , I / n  expansion in second order; . . , l / n  expansion in first order. 
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2L 
0 1 

h 

Figure 3. The critical values of nc where the nature of the transition changes. - - -, 
second-order calculation; . . . ., first-order calculation. 

(v) As already mentioned, the latent heat expression gives the possibility to estimate 
the crossover values of n,, where the phase transition changes from first order to second 
order. The estimated n, values for different values of A are given in figure 3. It is 
generally supposed (Nienhuis et a1 1983) that the exact value of n, is 2 independently 
of the value of A. In our case, even in this low order of the calculation, the estimated 
values of n, are in the range 2.8-3.6, and there is no strong dependence of n, on A. 
So this picture can be considered to be consistent with the conjectured one. 

(vi) By expanding equations (3.2) and (3 .3)  around the 2n-state Potts point in 
powers of ( A  - l ) ,  the following series can be obtained: 

+. . .) (3.6) 
5 1  27 1 
4 2n 8 (2n)2"'  

+ ( h - l ) '  

1 5  
2n (2n) 
--y.. .) +. . .]. L=2nh[ 1 -A+2 2n (2n)* (3.7) 

It will be shown in 0 4 that in first order of ( A  - 1) the coefficients can be summed. 
This exercise will be done by using anisotropy expansion around the 2n-state Potts 
point. 

4. (A - 1) expansion around the 2n-state Potts point 

Let us turn back to expression (2.5), where the Hamiltonian of the system is split into 
a self-dual part (H,) and a perturbation (Hp). Let us suppose that n > 2. The phase 
transition is of first order so the transition is accompanied by a crossing of energy 
levels. Let us denote the difference between the two lowest levels by F(h ,  A - l ) ,  and 
the same quantities for Ho and Hp are denoted by Fo and Fp, respectively. The gap 
vanishes at the phase transition point, so 

F (  h*, A - 1) = 0. (4.1) 

In the 2n-state Potts point, and for the system described by the Hamiltonian H,, the 
transition point is just h* = 1, therefore 

F ( l , O ) = O ,  Fo( 1, A - 1) = 0. 

Now let us suppose that it is possible to expanc) F(h* ,  A - 1) in equation (4.1) with 
respect to ( A  - 1). This assumption is non-trivial and we cannot prove it; however, the 
final results are taken as retrospective evidence for the validity of the method. 



Hamiltonian cubic model: I I  581 

By expanding (4.1) in first order in ( A  - l ) ,  

F (h* ,  A - 1) = FO(1, A - l)+- (h*  - 1) + F p ( l ,  A - 1) +. . . =O. 
:?lA=] 

h = l  

Thus the change in the phase transition point is 

The denominator on the right-hand side of (4.2) is proportional to the latent heat 
of the 2n-state Potts model, that can be written by using the Hellmann-Feynman 
theorem as 

where 10) and 11) denote the ground state and the first excited states of the 2n-state 
Potts model, respectively. The numerator of (4.2) has a form similar to (4.3), namely 

Since both in the disordered phase and in the broken symmetry phase the symmetry 
ofthe Potts model requires that ( M k )  is independent of (non-zero) k, the two expressions 
are proportional to each other and their ratio in (4.2) is just ( n  -2)/(2n - 1) ( A  - 1). 

Thus, the phase transition points in first order are given by 

n-2 
2n-1 

h * = l + -  ( A  - 1 ) + .  . .. (4.4) 

This result coincides with the result of the l / n  expansion in equation (3.6). It is 
pointed out that equation (4.4) holdsjor the single phase transition part of the phase 
diagram, otherwise it may be considered as a ‘duality line’. 

The latent heat can be calculated from the slope of the F(h ,  A-1) curve at h*: 

L = - a F ( h ,  A)/ahlh.. 

By expanding L in first order of A - 1, 

The first term can be expanded as 

(4.5) 

The first term is just the latent heat of the 2n-state Potts model; the second is zero due 
to the duality properties of the Potts model. The third term of (4.6) as well as the 
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second term in (4.5) are proportional to the latent heat of the 2n-state Potts model. 
Therefore we can write up to first order 

L = LPotts[ 1 + (2n - l ) - ' ( A  - 1) +. . .I. (4.7) 

This formula is also in accordance with the result of the l / n  expansion (3.7). 
Now supposing that this series does not contain a diverging coefficient in some 

finite order, and the series has finite sum, then equation (4.7) gives compelling evidence 
that the cubic phase transition turns first order at n = 2 for a non-zero range of A, and 
the latent heat has an essential singularity at n = 2. The non-fulfilment of these condi- 
tions, however, would not be compelling counterevidence, since the latent heat of the 
cubic transition might vanish at n = 2 at an infinitely faster or slower rate than that of 
the Potts model. Finally it is mentioned that the higher-order terms of the anisotropy 
expansion should be exposed by the derivatives of the free energy of the Potts model 
at the critical point; however, these are not yet known. 

5. Summary 

In this paper, which represents the second part of our work on the (1 + 1 ) ~  n-component 
cubic model, the properties of the system were investigated along the cubic transition 
line, for the first-order transition. We used the 1/ n expansion and anisotropy expansion, 
which supply complementary information. The results show the cubic transition to be 
of first order for n > 2, independently of the coupling. The latent heat depends on the 
coupling (there is no universality), and has an essential singularity at n =2. At the 
multicritical point all terms of the series are of the same order of magnitude, which 
prevents the application of a perturbational expansion. 
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Appendix 

Strong-coupling expansion 

The strong-coupling representation (paper I, equations (2.1) and (2.2)) is used in the 
calculation. The unperturbed part of the Hamiltonian is 

Ho= H A + c  h, 
I 

while the perturbation 

V =  Hh-C h2. 
I 

The ground state of Ho is given by 

$s i0=  11 1 . . . 1) 

with the energy E?'= -NA,/2+ Nhz. 
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The lower lying excitations of H, contain one flipped spin, and they are of two kinds: 
*%O l , k = / 1  1 . .  . 1 k 1 . .  . 1) 

with energy E?*,:= E;'+hl+A2, and 

(CI$+l=I1 1 . . .  1 ( n + l ) l . .  . I)  

with energy E;$,+, = E;'+2A1. The two excitations are N(2n  - 2)- and N-fold degener- 
ate, respectively. The higher lying excitations of Ho contain more flipped spins 

The first few terms of the Brillouin-Wigner Perturbational series for the ground 
state energy are the following: 

E;'= -N(A1/2+ h2), E:' = 0, 

+ (2n-2 )  h'h2 ) ( A l )  h: h:h2 
( A  + A 2 + 2(2 n - 2) 

( A I  + ~ 2 ) ~  

( A  I + A 2 P A  1 ( A I  + A J 2  ' 

h: +...). 

A well defined l / n  expansion exists if condition (4.1) is fulfilled. Then the ground 
state energy can be written as 

The zeroth-order term is just 
&>o= -?A,. 1 

The first-order term is the sum of a geometric series, which stands in the first column 
in the right-hand sides of (Al) .  These elements have the property that in the 
(01 VgV. . . gVI0) perturbational expression the V perturbation always acts on the same 
spin. The sum of these terms is 

+ 2nh2. 2nh1/(A1 + A,) 
E;' = -2nh, 

1 -2nhl/(Al + A 2 )  

The second-order term in (A2) is more complicated. 

Weak-coupling expansion 

The weak-coupling form of the Hamiltonian (paper I, equations (2.5) and (2.6)) is 
used in this calculation. The unperturbed part of the Hamiltonian is 

Ho= H h + c  ( n  - l)A2/2n 
I 

while the perturbation is 

V = HA - ( n  - l)h2/2n. 
I 
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The ground state of Ho is given by 

JIp= 11'1'. . . 1') 

with the energy E?'= - N [ 2 ( n - 2 ) h , - ( n - 1 ) A 2 / 2 n ] .  
The lower lying excitations contain a flipped pair of spins, and they are of two kinds: 

* W O  - - 11'1'. . . 1'(2k)'(2n+2-2k)'l ' .  . . 1'), k = 1 , 2  ,..., n, 

with energy ET$& = E,Wso+4nhl +4(h2- h , ) ,  and 

@vJ 1,2k+1 = 11'1'. . . 1'(2k+1)'(2n+ 1 -2k ) ' l ' .  . . I'), 
with energy = Ez*O+4nh1. The two excitations are Nn- and N ( n  - 1)-fold 
degenerate, respectively. The higher lying excitations of Ho contain more flipped spins. 

The first few terms of the perturbational series for the ground state energy are 

E:.' = - N[ (2n - 2)hl - ( n  - 1)A2/2n], 

k = l , 2  ,..., n-1 ,  

E:,' = 0, 

The l / n  expansion can be written in the region (4.1) as 

The zeroth-order term is 

e?'= -2nhl + A2/2. 

The first-order term is the sum of elements where the V perturbation acts on the same 
pair of spins: 

1 (A2+A1)2/8nh, 1 (A2-A1)2/8nhl 
2 1-(A2+Al)/8nhl-2 l-(A2-A1)/8nh,' 

E ~ W "  = 4nhl - A 2  -- 

The higher-order terms in (A3) contain more pairs of flipped spins. 
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